The Global Attractor Associated with the Viscous Lake Equations

نویسنده

  • WILLIAM OTT
چکیده

We consider the motion of an incompressible fluid confined to a shallow basin with varying bottom topography. A two-dimensional shallow water model has been derived from a three-dimensional anisotropic eddy viscosity model and has been shown to be globally well posed in [15]. The dynamical system associated with the shallow water model is studied. We show that this system possesses a global attractor and that the Hausdorff and box-counting dimensions of this attractor are bounded above by a value proportional to the weighted L2-norm of the wind forcing function. A weighted Sobolev-Lieb-Thirring inequality plays the key role in the obtention of the dimension estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Attractor on a Class of Viscous Nonlinear Dispersive Wave Equations

Abstract: This paper aims at presenting a proof of the attractor for a class of viscous nonlinear dispersive wave equations. In this paper, the global existence of solution to this equation in L2 under the periodical condition is studied. By using the time estimate of this equation, we get the compact and bounded absorbing set and the existence of the global attractor for the viscous nonlinear ...

متن کامل

Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...

متن کامل

Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

This paper concerns the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue spaceL with 2 < q ∞, we show that the degenerate viscous lake equations possess a unique global solution and the solution c...

متن کامل

X iv : c ha o - dy n / 96 07 01 6 v 1 2 9 Ju l 1 99 6 Limit Set of Trajectories of the Coupled Viscous Burgers

In this letter, a coupled system of viscous Burgers’ equations with zero Dirichlet boundary conditions and appropriate initial data is considered. For the well-known single viscous Burgers’ equation with zero Dirichlet boundary conditions, the zero equilibrium is the unique global exponential point attractor. A similar property is shown for the coupled Burgers’ equations, i.e., trajectories sta...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008